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Exercise 1. We have
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(One need not compute the two integrals above, it suffices to show that they are both finite.)
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Exercise 2. We have already seen that e” - f € C°°(R) in the lecture. Furthermore, for all n € N, we
have

0 <limsupz"f(z) <limsupz"e™® =0,
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which shows that f € .(R). We have
e*, f) = / e”Fdx = oo.
0

Therefore, we have e* ¢ .#/(R) whilst e € 2’(R) for the exponential function is locally integrable.

Exercise 3. By Fourier inversion formula, for all ¢ € .(R), we have

(F(1).0) = (17N = [ Blede =2mp(0) = 2o, i).

R
On the other hand, we have
F (1) = 2w dy,
which makes sense for . (d) = 1, and we recover the Fourier inversion formula: .#2(dy) = 27dp.
The second computation was made during the lecture and we omit it.
Exercise 4. 1. By the Fourier inversion formula, we have
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and this implies that
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When r — oo, we have
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and since 2s — d > 0, the integral converges and the inequality is proven.
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2. If u,v € #(R%), we have

# / ae — n)o(n)dn.

Therefore, writing for simplicity (z)* = (1 + || ) we get

@) 7] < g [ (6= 0T = m) S0+ sz [ [a(E = mltn)* Gl

uo(§) =

Since 1,7 € L*(R?), we can apply Young’s inequality L' x L2 C L? to conclude the proof.

Exercise 5. 1. Indeed, we have

p[Cenen @l ma=p [T ([ s d

:/x (p/ooo 1{|f(ac)|>t}dt> du(%‘)=/x (p/olf(z)lt” 1dt> / |f ()P dp(x

2. Indeed, we see at once that
t t
(> e {ul>ghufms 1.

and the result follows by additivity of the integral. If z € {|f| > ¢}, then |f(z)| > t, and since
t t

lf(z)| = |g(x) + h(z)|, we must have |g(x)| > 5 or |h(z)] > 3 (otherwise, we get |f(z)| <

lg(z)| + |h(z)| < t, a contradiction).
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3. Since gi+h: = f, by unicity of the Fourier transform, we deduce that f = g;+h;. If {|gt| > 2} =g,

the previous two questions show that
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where we used Markov’s inequality
Lol > ) < 5 [ le@)PLia).

4. We have by Cauchy-Schwarz inequality
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Then, we have
Ay
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Therefore, we define A; such that

t t
and this yields [|g¢[|1,« ga) < 2 and as gy is a continuous function, this implies that {| gt| > 2} =g.

For simplicity, write from now on A; = C(d, s)t%_s.
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5. We finally get the inequality
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where we used that g —s= é



