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Exercise 1. We have

v.p.
1
x

= (log |x|)′
,

which shows that for all φ ∈ S (R),∣∣∣∣〈v.p.
1
x

, φ

〉∣∣∣∣ ≤
∣∣∣∣∫

R
log |x|φ′(x)dx

∣∣∣∣ ≤
(∫ 1

−1
log
(

1
|x|

)
dx

)
∥φ′∥L∞(R)

+
(∫

R\[−1,1]

log |x|
|x|2

dx

)∥∥x2φ′∥∥
L∞(R) = 2

(
∥φ′∥L∞(R) +

∥∥x2φ′∥∥
L∞(R)

)
.

(One need not compute the two integrals above, it suffices to show that they are both finite.)

Exercise 2. We have already seen that ex · f ∈ C∞(R) in the lecture. Furthermore, for all n ∈ N, we
have

0 ≤ lim sup
x→∞

xnf(x) ≤ lim sup
x→∞

xne−x = 0,

which shows that f ∈ S (R). We have

⟨ex, f⟩ =
∫ ∞

0
e− 1

x dx = ∞.

Therefore, we have ex /∈ S ′(R) whilst ex ∈ D ′(R) for the exponential function is locally integrable.

Exercise 3. By Fourier inversion formula, for all φ ∈ S (R), we have

⟨F (1), φ⟩ = ⟨1, F (φ)⟩ =
∫
R

φ̂(ξ)dξ = 2π φ(0) = ⟨2π δ0, φ⟩ .

On the other hand, we have

F (1) = 2π δ0,

which makes sense for F (δ0) = 1, and we recover the Fourier inversion formula: F 2(δ0) = 2πδ0.
The second computation was made during the lecture and we omit it.

Exercise 4. 1. By the Fourier inversion formula, we have

f(x) = 1
2π

∫
Rd

f̂(ξ)eix·ξdξ,

and this implies that

∥f∥L∞(Rd) ≤
∥∥∥f̂
∥∥∥

L1(Rd)
≤
(∫

Rd

dx

(1 + |ξ|2)s

) 1
2

∥f∥Hs(Rd) =
(

β(d)
∫ d

0

rd−1dr

(1 + r2)s

) 1
2

∥f∥Hs(Rd) .

When r → ∞, we have

rd−1

(1 + r2)s
≃ 1

r1+2s−d
,

and since 2s − d > 0, the integral converges and the inequality is proven.

1



EPFL - Spring 2025
Calculus of Variations Mathematics Section
Série 5

Alexis Michelat
Exercises

21 March 2025

2. If u, v ∈ S (Rd), we have

ûv(ξ) = 1
(2π)d

∫
Rd

û(ξ − η)v̂(η)dη.

Therefore, writing for simplicity ⟨x⟩s =
(
1 + |x|2

) s
2 , we get

⟨xi⟩s|ûv(ξ)| ≤ 1
(2π)d

∫
Rd

(⟨ξ − η⟩sû(ξ − η)) v̂(η)dη + 1
(2π)d

∫
Rd

|û(ξ − η)|⟨η⟩s|v̂(η)|dη.

Since û, v̂ ∈ L1(Rd), we can apply Young’s inequality L1 ∗ L2 ⊂ L2 to conclude the proof.
Exercise 5. 1. Indeed, we have

p

∫ ∞

0
tp−1µ (X ∩ {x : |f(x)| > t}) dt = p

∫ ∞

0
tp−1

(∫
X

1{|f(x)|>t}dµ(x)
)

dt

=
∫

X

(
p

∫ ∞

0
1{|f(x)|>t}dt

)
dµ(x) =

∫
X

(
p

∫ |f(x)|

0
tp−1dt

)
dµ(x) =

∫
X

|f(x)|pdµ(x).

2. Indeed, we see at once that

{|f | > t} ⊂
{

|g| >
t

2

}
∪
{

|h| >
t

2

}
,

and the result follows by additivity of the integral. If x ∈ {|f | > t}, then |f(x)| > t, and since
|f(x)| = |g(x) + h(x)|, we must have |g(x)| >

t

2 or |h(x)| >
t

2 (otherwise, we get |f(x)| ≤
|g(x)| + |h(x)| ≤ t, a contradiction).

3. Since ĝt+ĥt = f̂ , by unicity of the Fourier transform, we deduce that f = gt+ht. If
{

|gt| >
t

2

}
= ∅,

the previous two questions show that∫
Rd

|f(x)|pdx ≤ p

∫ ∞

0
tp−1L d

({
|ht| >

t

2

})
dt ≤ p

∫ ∞

0
tp−1 4

t2

(∫
Rd

|ht(x)|2dx

)
dt

= 4p

∫ ∞

0
tp−3 ∥ht∥L2(Rd) dt,

where we used Markov’s inequality

L d({|φ| > A}) ≤ 1
A2

∫
Rd

|φ(x)|2dL d(x).

4. We have by Cauchy-Schwarz inequality

|gt(x)| ≤ 1
(2π)d

∫
B(0,At)

|f̂(ξ)|dξ ≤ 1
(2π)d

(∫
B(0,At)

|ξ|−2sdξ

) 1
2 (∫

Rd

|ξ|2s|f̂(ξ)|2dξ

) 1
2

.

Then, we have ∫
B(0,At)

|ξ|−2sdξ = β(d)
∫ At

0
rd−1−2sdr = β(d)

d − 2s
Ad−2s

t .

Therefore, we define At such that

1
(2π)d

√
β(d)

d − 2s
A

d
2 −s
t = t

2

and this yields ∥gt∥L∞(Rd) ≤ t

2 , and as gt is a continuous function, this implies that
{

|gt| >
t

2

}
= ∅.

For simplicity, write from now on At = C(d, s)t d
2 −s.
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5. We finally get the inequality∫
Rd

|f(x)|pdx ≤ 4p(2π)d

∫ ∞

0

(∫
Rd\B(0,At)

tp−3|f̂(ξ)|2dξ

)
dx

= 4p(2π)d

∫
Rd

|f̂(ξ)|2
∫ C(d,s)|ξ|

d
2 −s

0
tp−3dt

 dξ

= 4p(2π)d

p − 2 (C(d, s))p−2
∫
Rd

|ξ|(
d
2 −s)(p−2)|f̂(ξ)|2dξ

= 4p(2π)d

p − 2 (C(d, s))p−2
∫
Rd

|ξ|
d(p−2)

p |f̂(ξ)|2dξ,

where we used that d

2 − s = d

p
.
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